An Approximate Analytical Solution of Coupled Nonlinear Fractional Diffusion Equations
نویسنده
چکیده
In recent years, fractional reaction-diffusion models have been studied due to their usefulness and importance in many areas of mathematics, statistics, physics, and chemistry. In a fractional diffusion equation, the second derivative in the spatial variable is replaced by a fractional derivative. The resulting solutions spread faster than classical solutions and may exhibit asymmetry, depending on the fractional derivative used. In this paper, a fractional exponential operator is considered as a general approach for solving partial fractional differential equations. We develop an approach for solving coupled nonlinear fractional diffusion equations with nonlinear source terms. These solutions will be evaluated numerically based on approximation analytical solutions. Comparisons between the approximate analytical solution and numerical solutions are shown.
منابع مشابه
Numerical Solution of Caputo-Fabrizio Time Fractional Distributed Order Reaction-diffusion Equation via Quasi Wavelet based Numerical Method
In this paper, we derive a novel numerical method to find out the numerical solution of fractional partial differential equations (PDEs) involving Caputo-Fabrizio (C-F) fractional derivatives. We first find out the approximation formula of C-F derivative of function tk. We approximate the C-F derivative in time with the help of the Legendre spectral method and approximation formula o...
متن کاملSolving multi-order fractional differential equations by reproducing kernel Hilbert space method
In this paper we propose a relatively new semi-analytical technique to approximate the solution of nonlinear multi-order fractional differential equations (FDEs). We present some results concerning to the uniqueness of solution of nonlinear multi-order FDEs and discuss the existence of solution for nonlinear multi-order FDEs in reproducing kernel Hilbert space (RKHS). We further give an error a...
متن کاملSolution of the fractional Zakharov-Kuznetsov equations by reduced dierential transform method
In this paper an approximate analytical solution of the fractional Zakharov-Kuznetsov equations will be obtained with the help of the reduced differential transform method (RDTM). It is in-dicated that the solutions obtained by the RDTM are reliable and present an effective method for strongly nonlinear fractional partial differential equations.
متن کاملModified Laplace decomposition method for fractional Volterra-Fredholm integro-differential equations
This paper successfully applies the Adomian decomposition and the modified Laplace Adomian decomposition methods to find the approximate solution of a nonlinear fractional Volterra-Fredholm integro-differential equation. The reliability of the methods and reduction in the size of the computational work give these methods a wider applicability. Also, the behavior of the solution can be formall...
متن کاملThe Solution of Coupled Nonlinear Burgers' Equations Using Interval Finite-difference Method
In this paper an coupled Burgers' equation is considered and then a method entitled interval finite-difference method is introduced to find the approximate interval solution of interval model in level wise cases. Finally for more illustration, the convergence theorem is confirmed and a numerical example is solved.
متن کامل